Monday, 10 September 2012

YAY!! Talk selected for PyCon India 2k12

My talk on Python as a learning language got selected. Excited to meet many pythonistas there at the conference. :)

Link to my proposal - Link

Thursday, 7 June 2012

Canny Edge Detection

Canny Edge Detection

This summer I will be implementing the Canny Edge Detector  in python.

Edge Detection? What? Why?

What - Edge detection in image processing is a tool which detects areas in images with sudden change in brightness.
Why - Very useful in computer vision all types of imaging tasks. Used to reduce the amount of data in an image and preserve only the important ones for further processing.

What is expected from the algorithm?

It must be optimal fulfilling to these criteria:
1. Good Detection - Probability to detect 'real' edges should be maximized and probability to detect 'unreal' edges must be minimized. (MAXIMUM Signal To Noise RATIO)
2. Good Localization - Detection edges should be as close as possible to real edges.
3. Edges count -One real edge should correspond to only one detection edge.

Implementation

My implementation will be in python using the Scipy module less and mathematics more. This is because I want to learn about it. I will be updating this section this summer frequently. 

Test Image 
 





Imports:
import scipy.ndimage as ndi
import scipy
import numpy
import Image
import math

Edit: Done till sobel edge detection.
 STEP: NOISE REDUCTION 1. The first step is to change the image to b/w which is already done in our image. 
2. Then we store the image in a numpy array. 
3. Apply a gaussian filter to the image to make it smooth. This is because this will remove grains from the image with sigma=1.4.

sigma = 1.4
f = 'lena_std.jpg.jpg'
img = Image.open(f).convert('L') #grayscale
imgdata = numpy.array(img, dtype = float)
G = ndi.filters.gaussian_filter(imgdata, sigma)

STEP: Search the intensity gradient of the image
4. The edges of an image may point to different directions. So, we use the Sobel Operator to detect horizontal, vertical and diagonal edges. 

What? Sobel? Whats that?
In simple terms, it calculates the gradient of the image intensity at each point. Edges in an image are actually places of sudden jump in intensity. It gives the largest change in light to dark and rate of change in that direction. It searches for maximum and minimum in first derivative of the image. It is used to find the absolute gradient of the image at each point in a b/w image. It uses 2 convolution masks for this. One is for X-direction and the other is for Y-direction. They are also known as kernels. If A is the image and Gx and Gy are two images which at each point contain the horizontal and vertical derivative approximations, the computations are as follows:



 So, the magnitude is :
And, the direction is:
 
So, for an image pixel A[1][1] the sliding occurs like this:

Edge[1][1] = (A[0][0]*-1)+(A[0][1]*0)+(A[0][2]*1)+(A[1][0]*-2)+(A[1][1]*0)+(A[1][2]*2)+ (A[2][0]*-1)(A[2][1]*0) +(A[2][2]*1)

Note: The convolution occurs just by sliding the kernels on each pixel. Thus the first one to be convolved is A[1][1]. The rows and columns at the corners of the image are not convolved. This is because the center of the kernel cannot reach them. The image below describes this:


Now, the code for this.

sobelout = Image.new('L', img.size)                                       #empty image
gradx = numpy.array(sobelout, dtype = float)                        
grady = numpy.array(sobelout, dtype = float)

sobel_x = [[-1,0,1],
           [-2,0,2],
           [-1,0,1]]
sobel_y = [[-1,-2,-1],
           [0,0,0],
           [1,2,1]]

width = img.size[1]
height = img.size[0]

for x in range(1, width-1):
    for y in range(1, height-1):
        px = (sobel_x[0][0] * G[x-1][y-1]) + (sobel_x[0][1] * G[x][y-1]) + \
             (sobel_x[0][2] * G[x+1][y-1]) + (sobel_x[1][0] * G[x-1][y]) + \
             (sobel_x[1][1] * G[x][y]) + (sobel_x[1][2] * G[x+1][y]) + \
             (sobel_x[2][0] * G[x-1][y+1]) + (sobel_x[2][1] * G[x][y+1]) + \
             (sobel_x[2][2] * G[x+1][y+1])

        py = (sobel_y[0][0] * G[x-1][y-1]) + (sobel_y[0][1] * G[x][y-1]) + \
             (sobel_y[0][2] * G[x+1][y-1]) + (sobel_y[1][0] * G[x-1][y]) + \
             (sobel_y[1][1] * G[x][y]) + (sobel_y[1][2] * G[x+1][y]) + \
             (sobel_y[2][0] * G[x-1][y+1]) + (sobel_y[2][1] * G[x][y+1]) + \
             (sobel_y[2][2] * G[x+1][y+1])
        gradx[x][y] = px
        grady[x][y] = py
sobeloutmag = scipy.hypot(gradx, grady)
sobeloutdir = scipy.arctan2(grady, gradx)


The edge direction is then rounded to one of the four directions, horizontal, vertical, left diagonal and right diagonal.This can be understood from the code below.

for x in range(width):
    for y in range(height):
        if (sobeloutdir[x][y]<22.5 and sobeloutdir[x][y]>=0) or \
           (sobeloutdir[x][y]>=157.5 and sobeloutdir[x][y]<202.5) or \
           (sobeloutdir[x][y]>=337.5 and sobeloutdir[x][y]<=360):
            sobeloutdir[x][y]=0
        elif (sobeloutdir[x][y]>=22.5 and sobeloutdir[x][y]<67.5) or \
             (sobeloutdir[x][y]>=202.5 and sobeloutdir[x][y]<247.5):
            sobeloutdir[x][y]=45
        elif (sobeloutdir[x][y]>=67.5 and sobeloutdir[x][y]<112.5)or \
             (sobeloutdir[x][y]>=247.5 and sobeloutdir[x][y]<292.5):
            sobeloutdir[x][y]=90
        else:
            sobeloutdir[x][y]=135
STEP: Non Maximum Suppression
 For each image pixel in the direction matrix, if corresponding pixel of the magnitude image is less than its diagonals, vertical or horizontal pixels we make that pixel 0. Code below is easy to understand.


for x in range(1, width-1):
    for y in range(1, height-1):
        if sobeloutdir[x][y]==0:
            if (sobeloutmag[x][y]<=sobeloutmag[x][y+1]) or \
               (sobeloutmag[x][y]<=sobeloutmag[x][y-1]):
                mag_sup[x][y]=0
        elif sobeloutdir[x][y]==45:
            if (sobeloutmag[x][y]<=sobeloutmag[x-1][y+1]) or \
               (sobeloutmag[x][y]<=sobeloutmag[x+1][y-1]):
                mag_sup[x][y]=0
        elif sobeloutdir[x][y]==90:
            if (sobeloutmag[x][y]<=sobeloutmag[x+1][y]) or \
               (sobeloutmag[x][y]<=sobeloutmag[x-1][y]):
                mag_sup[x][y]=0
        else:
            if (sobeloutmag[x][y]<=sobeloutmag[x+1][y+1]) or \
               (sobeloutmag[x][y]<=sobeloutmag[x-1][y-1]):
                mag_sup[x][y]=0
STEP: Edge Linking
 Choose two thresholds, one low(tl) and another high(th). This depends on the image. Create two blank images(gnh and gnl). Gnlhwill store pixels of non maximum suppression  which are >= th and the other with store pixels which are >=tl. Thus gnl will contain all features of gnh. Now, to normalize the edges we do gnl = gnl-gnh. After this step, we follow these steps as given by canny:
a. Locate the next unvisited edge pixel p, in gnh.
b. Mark as valid edge pixels all the weak pixels in gnl that are connected to p by 8 connectivity.
c. If all non zero pixels in gnh have been visited, STOP.
 Gnh will give the final image. 
The code for this is:



m = numpy.max(mag_sup)
th = 0.2*m
tl = 0.1*m


gnh = numpy.zeros((width, height))
gnl = numpy.zeros((width, height))

for x in range(width):
    for y in range(height):
        if mag_sup[x][y]>=th:
            gnh[x][y]=mag_sup[x][y]
        if mag_sup[x][y]>=tl:
            gnl[x][y]=mag_sup[x][y]
gnl = gnl-gnh

def traverse(i, j):
    x = [-1, 0, 1, -1, 1, -1, 0, 1]
    y = [-1, -1, -1, 0, 0, 1, 1, 1]
    for k in range(8):
        if gnh[i+x[k]][j+y[k]]==0 and gnl[i+x[k]][j+y[k]]!=0:
            gnh[i+x[k]][j+y[k]]=1
            traverse(i+x[k], j+y[k])

for i in range(1, width-1):
    for j in range(1, height-1):
        if gnh[i][j]:
            gnh[i][j]=1
            traverse(i, j)

The output I get after this is:


Hope you liked it. Please comment. I need your views to improve. Thank You.

Code: github repo
ImageSet: Imgur

Wednesday, 16 May 2012

Target - Code Jam 2k13

Google mailed me that I could not qualify to the 2nd round. :( I am coming next year google, prepare the questions. :).
Happy coding friends!  




Wednesday, 9 May 2012

SPOJ: HACKRNDM

Here we are given 2 integers, n and k. Then follows n lines each with an integer. We have to print the number of pairs whose absolute difference is equal to k.

The question is similar to the question k-difference at Interviewstreet. The noob solution is to hold each element and compute difference with all other elements and if it equals to k, increase count by 1. O(n^2)

But the best way is to add all elements in a set, create another set with all the numbers and k added to each of them. Thus, if A = [1, 5, 3, 4, 2] and k=2, then newset = [3, 7, 5, 6, 4]. Now finding the length of the intersection of the two sets would give the answer.

My solution was in python.

I did this which ran at 1.99:

 
len(nums & newset)   

Then I did this which gave 1.78:
 
len(nums.intersection(newset))

This proves the second one is faster.

Wednesday, 25 April 2012

Google Code Jam 2012

I have advanced to the first round of Google Code Jam 2012 by solving 3/4 questions.

Speaking in Tongues:
 
import sys

if __name__ == '__main__':
    f = sys.stdin
    if len(sys.argv) >= 2:
        fn = sys.argv[1]
        if fn != '-':
            f = open(fn)
    output = open('tongout.out', 'w')
    t = int(f.readline())
    for test in xrange(1, t+1):
        str1 = "Case #%d: " %(test)
        output.write(str1)
        string = f.readline().strip()
        ans = []
        for i in string:
            if i == 'a':
                ans.append('y')
            elif i == 'b':
                ans.append('h')
            elif i == 'c':
                ans.append('e')
            elif i == 'd':
                ans.append('s')
            elif i == 'e':
                ans.append('o')
            elif i == 'f':
                ans.append('c')
            elif i == 'g':
                ans.append('v')
            elif i == 'h':
                ans.append('x')
            elif i == 'i':
                ans.append('d')
            elif i == 'j':
                ans.append('u')
            elif i == 'k':
                ans.append('i')
            elif i == 'l':
                ans.append('g')
            elif i == 'm':
                ans.append('l')
            elif i == 'n':
                ans.append('b')
            elif i == 'o':
                ans.append('k')
            elif i == 'p':
                ans.append('r')
            elif i == 'q':
                ans.append('z')
            elif i == 'r':
                ans.append('t')
            elif i == 's':
                ans.append('n')
            elif i == 't':
                ans.append('w')
            elif i == 'u':
                ans.append('j')
            elif i == 'v':
                ans.append('p')
            elif i == 'w':
                ans.append('f')
            elif i == 'x':
                ans.append('m')
            elif i == 'y':
                ans.append('a')
            elif i == 'z':
                ans.append('q')
            elif i == ' ':
                ans.append(' ')
        out = ''.join(ans)
        output.write(out+"\n")
    output.close()
Dancing With the Googlers:


import sys

if __name__ == '__main__':
    f = sys.stdin
    if len(sys.argv) >= 2:
        fn = sys.argv[1]
        if fn != '-':
            f = open(fn)
    output = open('danout.out', 'w')
    t = int(f.readline())
    for test in xrange(1, t+1):
        c = 0
        str1 = "Case #%d: " %(test)
        output.write(str1)
        arr = map(int, f.readline().strip().split())
        n = arr[0]
        s = arr[1]
        p = arr[2]
        goog = arr[3:]
        goog.sort()
        fl=0
        y = 0
        for k in goog:
            temp = k-p
            temp/=2
            if fl==1 and k>=y:
                c+=1
            elif temp >= p-1 and temp>=0:
                c+=1
                fl=1
                y=k
            elif temp >= p-2 and s>=1 and temp>=0:
                c+=1
                s-=1
        output.write(str(c)+"\n")
    output.close()
Recycled Numbers:


import sys

if __name__ == '__main__':
    f = sys.stdin
    if len(sys.argv) >= 2:
        fn = sys.argv[1]
        if fn != '-':
            f = open(fn)
    output = open('recout1.out', 'w')
    t = int(f.readline())
    for test in xrange(1, t+1):
        str1 = "Case #%d: " %(test)
        output.write(str1)
        a, b = f.readline().strip().split()
        inta = int(a)
        intb = int(b)
        values = [str(i) for i in range(int(a), int(b)+1)]
        c = 0
        for i in values:
            arr = []
            for j in range(len(i), 0, -1):
                ans = i[j:]+i[:j]
                ans = int(ans)
                if ans > int(i) and ans >= inta and ans <= intb and ans not in arr:
                    arr.append(ans)
                    c+=1
        output.write(str(c)+"\n")
    output.close()
My journey to blogging starts today. This site will mostly be dedicated to programming. Thank you.